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Abstract

This paper focuses the attention on the drawbacks and abilities of wall-function techniques through an analysis of well-known wall-
functions from literature. Besides this, some deeper analysis of these tools by means of physical and numerical considerations are carried
out in order to improve their limitations when they are applied to predict heat transfer and fluid flow. Accuracy, grid-sensitivity, numer-
ical behaviour and verification of numerical simulations are key aspects in this paper. The main purpose is to obtain tools which are able
to predict both fluid flow and heat transfer with low CPU time consumption, reduced grid-sensitivity and a relatively good accuracy.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is focused on wall-function (WF) approaches
applied over two-equation eddy-viscosity models. These
approaches allow simulations using a moderate number
of control volumes, which implies lower CPU times
resources and smaller memory storage than other more
general, but not always more accurate, approaches. This
tendency has been recaptured for different authors in the
last years, e.g., Craft et al. [1], Bredberg and Davidson
[2], etc., which demonstrates a growing interest of turbu-
lence modelling using WF treatments.

Taking into account limitations and special abilities of
wall-function treatments, their analysis and development
could be useful in many industrial cases, even working in
combination with low Reynolds number (LRN) treatments
(in multi-block approaches) depending on the nature of the
expected flow in the different regions. The use of the law-of-
the-wall can save important computational resources, mak-
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ing this treatment more interesting from an engineering
point of view.

Grid-sensitivity is one of the most troublesome aspects
related to wall-function treatments applied to CFD codes.
Generally, CFD predictions are sensible to discretization.
Different strategies, as grid-refinement, are useful to
study this grid-dependent problem. However, wall-func-
tions focus their attention on using large near-wall control
volumes and, consequently, require alternative strategies to
reduce mentioned drawback. They will be discussed.

Firstly, the near-wall cell position is a crucial aspect
related to grid-sensitivity, since wall-function formulae
are usually designed assuming near-wall cell is placed at
logarithmic boundary-layer zone. What to do when
(because of the discretization, the flow, etc.) the model
has to work using near-wall cells placed out of the desired
area is essential in order to reduce grid-sensitivity.

Secondly, the high Reynolds number (HRN) model used
to solve inner nodes (those which are not located near the
walls) also has an important influence on accuracy and
grid-sensitivity. As the location of the second node and
successive can be placed in any position of the turbulent
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Nomenclature

Cl turbulent model constant
cp specific heat at constant pressure
cl log-law constant (cl = 2.44)
Cf friction factor
CV control volume
Dh hydraulic diameter
E,E* constants for velocity law-of-the-walleE;fE� constants for thermal law-of-the-wall
fl damping function for low Reynolds number

models
H characteristic length (channel height or step

height)
k turbulent kinetic energy per unit mass
Nu Nusselt number
Pk production of k due to shear stresses
P k near-wall averaged production of k due to shear

stresses
r Prandtl number
�p the mean pressure
p accuracy estimator for Richardson extrapola-

tion verification process
_qw wall heat flux
ReDh

Reynolds number based on hydraulic diameter
length and on bulk velocity ðReDh

¼ qDhubulk

l Þ
Res Reynolds number based on channel mid-height

length and friction velocity ðRes ¼ qðH=2Þus

l Þ
Ret turbulent Reynolds number (Ret = k/mx or k2/

m�)
Sij mean rate of strain tensor
Sz source term for generic turbulent dissipation (z)

transport equation
T mean temperature
T0 turbulent fluctuating temperature
t time
ui mean velocity in the i-direction
u0i turbulent fluctuating velocity in the i-direction
us friction velocity ðus ¼

ffiffiffiffi
sw

q

q
Þ

qu0iu
0
j turbulent shear stress or Reynolds stress tensor

qu0iT
0 turbulent heat flux

xi Cartesian coordinate in the i-direction
y+ dimensionless distance to the nearest wall

ðyþ ¼ yqus

l Þ
y* dimensionless distance to the nearest wall

ðy� ¼ yq
ffiffi
k
p

l Þ

Greek symbols

a thermal diffusivity (m/r)
dij Kronecker delta

� dissipation rate of k
~� corrected dissipation rate of k
g numerical correction for WWF2 treatment
j; j�; ~j constants for laws-of-the-wall
k thermal conductivity
l dynamic viscosity
lt eddy or turbulent viscosity
l�t dimensionless eddy or turbulent viscosity

ðl�t ¼ lt=lÞ
m kinematic viscosity
pk dissipation term in turbulent kinetic energy

transport equation
pk near-wall averaged dissipation term in turbulent

kinetic energy transport equation
pz dissipation term for generic turbulent dissipa-

tion (z) transport equation
P viscous to turbulent Prandtl ratio ðP ¼ r

rt
Þ

q density
rT turbulent Prandtl number
s turbulent time scale
sw wall shear stress
sl viscous shear stress
st turbulent shear stress
n numerical correction for WWF2 treatment
x specific dissipation rate of k

Subscripts

avg averaged
nw near-wall
in inlet
1 main flow
h hydraulic diameter
c thermal viscous limit
w wall
n north face
p main nodal value
v viscous limit

Superscripts

p relative to main node
N relative to north node
H relative to dimensionless distance
l laminar or viscous
log relative to logarithmic region
t turbulent
vis relative to viscous region
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boundary layer (depending on the flow and the discretiza-
tion), abilities of the mentioned HRN model are strongly
related to the quality of the complete resolution of turbulent
boundary layer. Regarding this fact, the way how k–� and k–
x models impose boundary conditions at the wall is rele-
vant, as further discussed.
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2. Mathematical models

Performed analysis of wall-function (WF) treatments
has been carried out through different k–� and k–x
approaches. On the one hand, the simplified two-layer
WF treatment proposed by Launder [3] has been chosen
as the standard wall-function approach (hereafter called
SWF1: standard wall function 1). Abilities of using

ffiffiffi
k
p

as
velocity scale and its two-layer approach on modelization
of the k-equation have been taken into account when trying
to solve complex flows. Despite these improvements, this
k–� approach presents different problems. To overcome
these problems, some modifications have been introduced
in the standard approach (modified method is referred to
SWF2: standard wall function 2). To solve inner nodes,
both k–� WF treatments use the classic high Reynolds
number model described in [4].

On the other hand, k–x treatments have been proposed
taking into account different formulae, physical assump-
tions and corrections. The first one is based on physical
considerations of Launder proposal [3] (which will be
called WWF1: x wall function 1), while the second is based
on a ‘‘blending” between pure law-of-the-wall and viscous
formulation based on y*. Both new proposed k–x treat-
ments use the well-known two-equation k–x high Rey-
nolds number model by Wilcox [5].

The use of x-equation instead of �-equation is desirable
because the former provides solutions for both the sublayer
and the logarithmic regions, which is strongly related to
grid-sensitivity, as shown.
2.1. Governing equations

The time-averaged governing equations (continuity,
momentum and energy) of the fluid flow assuming: fluid
Newtonian behaviour, constant thermophysical properties,
non-participant radiant medium and negligible body
forces, heat friction and influence of pressure on tempera-
ture, may be written in tensor notation as follows:

o�ui

oxi
¼ 0 ð1Þ

q
o�ui

ot
þ q�uj

o�ui

oxj
¼ � o�p

oxi
þ osij

oxj
ð2Þ

q
oT
ot
þ q�ui

oT
oxi
¼ � 1

cp

o _qi

oxi
ð3Þ

where sij ¼ lðo�ui
oxj
þ o�uj

oxi
Þ � qu0iu

0
j and _qi ¼ �k oT

oxi
þ cpqu0iT

0.
As has been noted previously, due to the time-averaging

process of the Navier–Stokes equations, new terms have
appeared in momentum and energy equations. They are
the Reynolds stress tensor ðqu0iu

0
jÞ and the turbulent heat flux

ðqu0iT
0Þ. Using eddy-viscosity models these terms are mod-

elled by analogy with the Stokes viscosity law and the Fou-
rier heat conduction through the eddy-viscosity (lt)
concept:
qu0iu
0
j ¼ �lt

oui

oxj
þ ouj

oxi

� �
þ 2

3
qkdij ð4Þ

qu0iT
0 ¼ � lt

rT

oT
oxi

ð5Þ
2.2. Strategies to address the wall-blocking effect: LRN and
WF techniques

The wall-blocking effect is defined as the sudden relam-
inarization of the turbulent flow due to the proximity of a
wall. Among two-equation eddy-viscosity models, there are
two different and well-known strategies to address this
effect: low Reynolds number (LRN) techniques and wall-
function (WF) approaches. The former is based on damp-
ing effects over the turbulent equations, while the latter is
developed under simplifications applied to the near-wall
cell in combination with high Reynolds number models
for inner nodes.

In this work, attention has been focussed on WF
approaches, using for inner nodes different high Reynolds
number two-equation models, depending on the dissipative
variable (k–� or k–x treatments). The effort made on near-
wall treatments is based on different assumptions and
numerical corrections, as they will be shown.

On the other hand, low Reynolds number models are
also tested and compared. With reference to drawbacks
and abilities of WF techniques (reduction on memory stor-
age and CPU time consumption, reduction on accuracy,
numerical uncertainties, etc.), comparisons with the Ince–
Launder k–� LRN model [6] (hereafter called IL) and with
Wilcox k–x LRN model [7] (hereafter called WX93) will be
of interest to quantify numerical and computational
improvements of WF techniques.

2.3. LRN and HRN two-equation models implementation

Different high Reynolds number and low Reynolds
number turbulence models are described by Eqs. (6)–(8).
Models constants and damping functions have not been
here included for brevity. They are clearly stated in original
references: [4] for the high Reynolds number k–� model; [5]
for the high Reynolds number k–x model; [6] for the low
Reynolds number k–� model (IL); and [7] for the low Rey-
nolds number k–x model (WX93):

q
ok
ot
þ q�uj

ok
oxj
¼ o

oxj
ðlþ lt=rkÞ

ok
oxj

� �
þ P k � pk ð6Þ

q
oz
ot
þ q�uj

oz
oxj
¼ o

oxj
ðlþ lt=rzÞ

oz
oxj

� �
þ P z � pz þ Sz ð7Þ

lt ¼ qClfl
k2

�
or lt ¼ qfl

k
x

ð8Þ

Details of the different terms can be found in the cited ref-
erences. Generic dissipative variable (z) adopts three differ-
ent forms depending on the model. The k–� high Reynolds
number model [4] uses the standard dissipation rate (�)
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while the LRN IL model [6] uses the ‘‘corrected” dissipa-
tion rate ð~�Þ. On the other hand, the k–x high Reynolds
number model [5] and the WX93 model [7] employ the spe-
cific dissipation rate (x). The ‘‘corrected” dissipation rate
ð~�Þ is a numerical correction needed to enforce zero dissipa-
tion value at the wall ð~�w ¼ 0Þ. Because of this, a ‘‘D” term
in k-equation, which is the assumed value of � at wall:
D = 2mok1/2/oxj, also needs to be added.
2.4. Near-wall treatments. The implementation and

development of WF techniques

On the other hand, WF techniques are mainly defined
by the specific near-wall treatment. Present work on imple-
mentation and development of WF techniques is based on
the simplifications suggested by Launder in [3] over more
complex two-layer approaches. In fact, this is the treatment
defined as the ‘‘standard” approach in this work (although
usually the work exposed in [4] is identified as the ‘‘stan-
dard” approach).

More concretely and from a general point of view, near-
wall treatments are based on different mathematical formu-
lae when a node is placed adjacent to a wall.

Instead of using the coupled set of Eqs. (1)–(8), near-
wall treatments are based on simplifications which, care-
fully implemented, can lead to overcome the detailed reso-
lution of the near-wall area.

The essence of these treatments is based on the simplifi-
cation of N–S equations combined with Boussinesq
hypothesis and mixing length assumption. These mathe-
matics leads to the well-known law-of-the wall:

u ¼ us

j
ln y þ constant ð9Þ

Further mathematical development and assumptions pro-
duce similar formulae for energy and turbulent variables.
All these hypothesis are taken in logarithmic region and,
because of this, the model has to be carefully designed
and used within this zone (or not too far). This is an impor-
tant aspect to achieve acceptable predictions of turbulent
boundary layer.
yv

yn -yv

yp

kp

Tw

yv

yn - yv

kp

q
w

a b

Fig. 1. Scheme of near-wall cell: (a) completely logarit
2.5. Basic model: k–� Launder treatment (standard wall

function 1: SWF1)

This ‘‘standard” model is based on a two-layer assump-
tion, i.e. to assume there is a limiting value (yv) between the
mainly viscous area (y < yv) and the mainly turbulent area
(y > yv). This treatment is also plotted in Fig. 2. Due to the
assumed physical behaviour, the numerical nature of the
near-wall control volumes takes meaningfulness in order
to implement the mathematical formulation. Essentially,
there are three typical kinds of near-wall cells according
to the region where they are situated: completely logarith-
mic, partially viscous, and completely viscous (Fig. 1a–c):

From Eq. (9), through mathematical repackaging and
experimental adjusting, basic logarithmic equations are
obtained [3]. In order to improve predictions under recircu-
lating and separated flows, velocity friction in u+ and y+ is
changed by

ffiffiffi
k
p

: u� ¼ u=
ffiffiffi
k
p

and y� ¼ y
ffiffiffi
k
p

=m. Thus, basic
logarithmic equations are written as u� ¼ 1

j� ln E�y� for
velocity, and T � ¼ rT

j� ln eE�y� for temperature. They are
used to describe the flow within the log-region (up to the
viscous limit y�v ¼

q
ffiffi
k
p

y
l ¼ 20:4). In the viscous sublayer,

the fluid is close enough to the wall to completely decay
turbulence.

Shear stress is hence described by sw ¼ l
y u for the viscous

sublayer, and sw ¼ j�q
ffiffi
k
p

lnðE�y�Þ u for the logarithmic area. Heat
transfer modelling is analogously _qw ¼ k

y ðT w � T Þ for the
viscous sublayer, and _qw ¼ j�q

ffiffi
k
p

lnðeE�y�Þ ðT w � T Þ for the logarith-
mic region.

In order to close the formulation, E* is obtained from
E� ¼ expðj�y�vÞ

y�v
, and eE� is calculated from Jayatillaka ‘‘pee-

function” correlated from pipe flow [9]:eE ¼ expð~jyþc rÞ
R ¼ 9:24ðP3=4 � 1Þð1þ 0:28 expð�0:007PÞÞ; P ¼ r

rt

From these expressions, and considering that R ¼
lnðE=eEÞ

~j ; yþc ¼ lneE
~jr and y�c ¼ C�1=4

l yþc are obtained. Being (as
Launder suggests [3]): E = 9.8, j = 0.41, E* = 4.36,
j* = 0.22 and rt = 0.9, the set of equations are closed.

In concordance with assumptions made for heat transfer
and fluid flow, the turbulence structure is also defined using
yp

yv yn
yp

yNkp

kN

c

hmic; (b) partially viscous; (c) completely viscous.
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Fig. 2. Assumptions on near-wall turbulence structure for � WF
treatments.
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a two-layer hypothesis. Fig. 2 shows assumptions made for
k and � profiles, as well as for viscous and turbulent shear
stress distribution.

As the turbulent kinetic energy transport equation is
solved at near-wall cells, Eq. (6) has to be slightly modified
in order to capture physics of large control volumes. The
local production (local Pk) and dissipation (pk = q�) of tur-
bulent kinetic energy are replaced by their averaged values
(P k and pk) based on a two-layer integration at the near-
wall cell.

P k is obtained under the two-layer integration, being the
limiting value y�v ¼ 20:4 and considering no turbulent
kinetic energy production at sublayer (P k ¼ 0 at y < yv),
as well as turbulent shear stress equal to the total shear
stress (sw = sl + st � st at y > yv):

P k ¼
1

yn

Z yv

y¼0

P k dy þ
Z yn

yv

P k dy

" #
� 1

yn

Z yn

yv

P k dy

� 1

yn

Z yn

yv

sw
du
dy

dy � swðun � uvÞ
yn

� s2
w=q

j�yn

ffiffiffi
k
p ln

yn

yv

where the law-of-the-wall for velocities ðun � uv ¼
sw=q
j�
ffiffi
k
p ln yn

yv
Þ has been introduced.

Dissipation of turbulent kinetic energy is also treated
using the two-layer assumption (see Fig. 2):

pk=q ¼
1

yn

Z yv

y¼0

�dy þ
Z yn

yv

�dy

" #

� 2lkv

qynyv

þ 1

yn

Z yn

yv

k3=2
v

cly
dy � 2lkv

qynyv

þ k3=2
v

clyn

ln
yn

yv

ð10Þ

Therefore, the turbulent kinetic energy equation (Eq. (6)) is
solved using the above mentioned integrated P k and pk val-
ues (regarding Eq. (10), the standard approach implements
kv = kN when near-wall node is viscous and kv = kp when
near-wall node is placed in the logarithmic region, see
Fig. 1). Integration is performed assuming zero diffusion
of k at the wall, i.e. ok

oy jy¼0 ¼ 0. The dissipation rate of tur-
bulent kinetic energy at the near-wall cell (�p) is obtained
from the estimated profile (see Fig. 2) instead of the resolu-
tion of its own transport equation (Eq. (7)). Therefore,

�p ¼ 2lkN

qy2
v

when the near-wall node is under y* = 20.4, and

�p ¼
k3=2

p

clyp
when the near-wall node is placed in the logarith-

mic region. See Fig. 1 for more details. It is worth to say
that the standard approach treats in the same way
near-wall nodes placed in partially viscous or completely
logarithmic areas, as y�p > 20:4 for both numerical configu-

rations (SWF2 model will suggest some modifications
about this subject, as shown). In order to close WF turbu-
lence modelling, turbulent viscosity is obtained from Eq.
(11) instead of Eq. (8) [3]:

lt ¼ qj�yp

ffiffiffi
k
p

ð11Þ
2.6. Modifications on Launder treatment: k–� (standard wall

function 2: SWF2)

Due to grid-sensitivity troubles detected in the Launder
treatment, some modifications are proposed. These changes
reduce sensitivity of predictions regarding near-wall cell
position. The main purpose is to improve behaviour of
SWF1 model when near-wall cell is placed at viscous region,
through modifications on formulation for both �p and �N.
Other aspects are treated as in the SWF1 approach. P k and
pk are defined in the same way as SWF1.

As to the � profile, some modifications have been intro-
duced in �N and �p values. When the near-wall node is par-
tially viscous ðy�p < y�vÞ, the value of the dissipation is

ð�p ¼ 2lkN

qynyv
þ k3=2

N

clyn
ln yn

yv
Þ. Regarding �N, its value is computed

as
k3=2

N

clyN
for near-wall nodes placed in both completely

ðy�n < y�vÞ and partially viscous ðy�p < y�vÞ areas. See Fig. 1.
As can be seen, �p adopts the value of pk=q (obtained

through the two-layer integration) when near-wall node is
partially or completely placed at viscous region, while �N
is solved using the assumed logarithmic profile for �
(instead its own transport equation) in that case. These
modifications improve results when near-wall node is
placed at viscous regions, which makes the model less sen-
sitive to near-wall position, as shown.

2.7. First k–x approach for WF (‘‘x” wall function 1:

WWF1)

This k–x treatment is based on a transformation of the
k–� SWF1 model. In fact, the WWF1 approach is based on
SWF1 considerations, modifying the way dissipation of
turbulence kinetic energy is modelled by changing the dis-
sipation rate (�) to the specific dissipation rate (x). Hence,
terms as shear stress, heat transfer, P k and eddy-viscosity
are calculated in the same manner as SWF1; other terms,
such as pk and xp are derived from assumptions made on
turbulence structure in the vicinity of the wall, which are
in agreement with hypothesis made for �, as shown in
Fig. 3.

Obviously, this modification implies the use of a k–x
model in high Reynolds regions and different formulae to
fix specific dissipation near the wall. The high Reynolds
model used in this approach is suggested by Wilcox in [5]
(see Section 2.3). As shown, grid-sensitivity of this model
is notoriously reduced because of the use of x (which
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Fig. 3. Assumptions on near-wall turbulence structure for x WF
treatments.
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provides both logarithmic and viscous solutions) when
approaching to the wall.

With reference to turbulence modelling, previously two-
layer exposed assumptions have been followed, hence pk is
obtained from integration. On the other hand, as to was
done for �, a different integration for logarithmic and vis-
cous areas is herewith proposed. For logarithmic regions,
an averaged dissipation rate of k (Clkxavg) is computed
taking into account the derived law-of-the-wall for x. It
is interesting to note that viscous part ð

R y¼yv

y¼0
Clxk dyÞ has

been removed, as it has been suggested by Bredberg [10]
and ratified by computations, which have shown how this
amount can be neglected without any significant influence
on final results:

pk=q ¼
1

yn � yv

Z yn

yv

�dy

" #
¼ 1

yn � yv

Z yn

yv

Clxk dy

" #

¼ 1

yn � yv

Z yn

yv

Cl

ffiffiffi
k
p

C1=4
l jy

k dy

¼ 1

yn � yv

C3=4
l k3=2

p

j
ln

yn

yv

ð12Þ

As for viscous areas, x ? 6m/by2 as y ? 0 [11], the integra-
tion becomes

pk=q ¼
1

yn

Z yn

y¼0

�dy
� �

¼ 1

yn

Z yn

y¼0

Clxk dy

¼ Cl

yn

Z yn

y¼0

xk dy ¼ Cl

yn

Z yn

y¼0

6m
by2

kv

y
yv

� �2

dy

¼ Cl

yn

Z yn

y¼0

6m
by2

v

kv dy � Cl
6m
by2

p

kp ð13Þ

where the last approximation is based on the fact that
kv=y2

v � kp=y2
p (see Fig. 2). Related to the nodal value for

xp, the same considerations are used, leading to
xp ¼

ffiffi
k
p
�lnðyn=yvÞ

C1=4
l jðyn�yvÞ

for logarithmic regions and to xp ¼ 6m
by2

p
for

viscous areas.
Finally, and in order to close WWF1 near-wall imple-

mentation details, it is important to note a different inter-
polation for eddy-viscosity. To obtain a value for the
eddy-viscosity at limiting surface of the near-wall control
volume ðln

t Þ, the most usual practice is to apply a linear
interpolation between near-wall cell ðlP

t Þ and inner cell
ðlN

t Þ. This approach, however, applies a pseudo-harmonic
interpolation in order to reproduce the wall-damping effect,
since this formulation reduces ln
t (and consequently, sn and

due to momentum conservation, sw) when near-wall node
is placed at buffer-layer. Despite the obtention of some
unrealistic profiles, this term allows to improve accuracy
of the method. The interpolation scheme is exposed in
Eq. (14):

ln
t ¼

1� fe

lP
t

þ fe

lN
t

� ��1

where f e ¼
yn � yp

yN � yp

ðsee Fig:1Þ

ð14Þ

Diffusion of k to the wall is again fixed to zero and turbu-
lent viscosity is fixed by means of Eq. (11).

2.8. Second k–x approach for WF (‘‘x” wall function 2:
WWF2)

Based on similar assumptions, a modified near-wall k–x
treatment is proposed. Attempting to improve the accuracy
and to reduce the grid-sensitivity of previous near-wall
approaches, a new blending near-wall treatment is sug-
gested. The main idea is to blend pure viscous formulation
and pure logarithmic formulation, and through a turbu-
lence-sensible blending function, a modification of mathe-
matical formulation is achieved. This fact allows to adapt
near-wall cell computations to its physics. The blending
has been designed as a function of y*. This variable offers
physical information on the location of the near-wall cell,
which is appropriate in order to design the specific near-
wall treatment. Additionally, this variable does not vanish
under separated flow (as y+ does) which allows resolution
of these kinds of flows.

While previous approaches were built on a discrete
switch between viscous and logarithmic formulation
(placed at yv), the essence of this attempt is to achieve a
continuous adaptation of the mathematical formulation.
Besides this aspect, and also motivated by it, more com-
plete formulation is used to define the viscous sublayer,
avoiding previous simplifications, which were more or less
related to numerical problems.

The blending function (A) has been designed taking as
reference the ‘‘theoretical” value for y�v ¼ 20:4. Addition-
ally, a numerical adjustment has been needed to refine sen-
sitivity and accuracy of the proposal:

A ¼ 1� exp
12� y�

3

� �
ð15Þ

As shown in Fig. 4, the blending factor is almost 0 (pure vis-
cous formulation) at y* 6 12, while it becomes 1 (pure log-
arithmic formulation) approximately at y* P 30. Its value
at y�v ¼ 20:4 is of approximately 0.94. A = 0.5 is achieved
at y* � 14. As shown, this function rapidly goes to logarith-
mic formulation, which is more stable than viscous formu-
lation at buffer-layer. To remove inaccuracies due to this
fact, some numerical corrections will be proposed.

Shear stress and heat flux are described in Table 1. As
can be seen, standard formulation is used for pure viscous



Table 2
WWF2 P k modelling depending on situation of near-wall node

Position of near-wall cell P k

Viscous (y* < 12*) �ltðoui
oxj
þ ouj

oxi
Þ oui

oxj
� g

Transition (12 < y* < 30) ð1� AÞ � �ltðoui
oxj
þ ouj

oxi
Þ oui

oxj
� gþ A � s2

w=q

j�yn

ffiffi
k
p

N
ln yn

yv

Logarithmic (y* > 30)
s2

w=q

j�yn

ffiffi
k
p

p
ln yn

yv

Table 3
WWF2 pk modelling depending on situation of near-wall node

Position of near-wall cell pk

Viscous (y* < 12*) Cl
6m
by2

p
kp � n

Transition (12 < y* < 30) ð1� AÞ � Cl
6m
by2

p
kp � nþ A � 1

yn�yv

C3=4
l k3=2

p

j ln yn

yv

Logarithmic (y* > 30) 1
yn�yv

C3=4
l k3=2

p

j ln yn

yv

Table 4
Node value of xp for WWF2 model depending on situation of near-wall
node

Position of near-wall cell xp

Viscous (y* < 12*) 6m
by2

p
� n

Transition (12 < y* < 30) ð1� AÞ � 6m
by2

p
� nþ A �

ffiffi
k
p

p ln
yn
yv

C1=4
l jðyn�yvÞ

Logarithmic (y* > 30)

ffiffi
k
p

p ln
yn
yv

C1=4
l jðyn�yvÞ
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Fig. 4. WWF2 blending function.

Table 1
WWF2 near-wall flow modelling

Position of near-wall cell sw _qw

Viscous (y* < 12) ðy� < y�cÞ
l
y u k

y ðT w � T Þ
Transition (12 < y* < 30) ð1� AÞ � ly uþ A � j�q

ffiffi
k
p

lnðE�y�Þ u –

Logarithmic (y* > 30)
ðy� > y�cÞ

j�q
ffiffi
k
p

lnðE�y�Þ u
j�q

ffiffi
k
p

lnðeE�y�Þ ðT w � T Þ
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and logarithmic parts, using a continuous transition
between y* = 12 and y* = 30. The limiting values have been
chosen using a combination of physical reasoning and
numerical adjustment. Due to the Prandtl-dependence of
the yþc value and of the thermal law-of-the-wall, blending
is not applied to the heat transfer computations.

As far as turbulence modelling is concerned, essential
assumptions used on previous k–x treatments are also
adopted for this approach. Identical blending function is
used for P k, pk and xp computations. Moreover, and based
on the use of the blending function, an exact P vis

k formula-
tion is adopted, instead of its suppression (as it was done in
previous approaches). This term can be significant depend-
ing on the flow. Complete formulation of this term,
P vis

k ¼ qu0iu
0
j

o�ui
oxj
¼ sij

o�ui
oxj

, is described in Table 2.
Related to formulation for pk and xp, the same consid-

erations are carried out. Tables 3 and 4, respectively, show
detailed mathematical formulation.

It is interesting to note the use of g-function for P vis
k for-

mulation and n-function for viscous pk � xp approaches.
Both functions are numerical corrections suggested to
improve the accuracy of the proposals when trying to per-
form the wall-blocking effect. One of the most difficult
problems when trying to achieve grid-insensitiveness is
the modelization of the buffer-layer. This region is placed
between the viscous sublayer and the inner or logarithmic
layer. In the buffer-layer wall-damping effects are signifi-
cant, which are responsible for the rapid decay of turbu-
lence towards the wall.

g-function is based on the work of Bredberg [2] and is
useful to ‘‘dampen” P vis

k numerical inaccuracies due to the
usual computation oui=oxi � Dui=Dxi. Eq. (16) makes such
formulation up to y+ � 10 viable, which is interesting in
order to blend P vis

k with P log
k at buffer-layer. On the other

hand, n-function is an alternative way to reproduce the
wall-blocking effect, by multiplying by a factor of two xp

and pk between y* = 1 and y* = 10, i.e. the beginning of
the buffer-layer. g and n are defined by Eqs. (16) and
(17), respectively:

g ¼ 1

1þ 0:9Ret

ð16Þ

n ¼ 2� 5:5� y�

4:5

� �8

ð17Þ

Unlike in previous near-wall treatments, the turbulent vis-
cosity is based on the standard two-equation formula in-
stead of the Prandtl–Kolmogorov expression. This is in
agreement with the use of pure viscous formulation. Hence,
lt = qk/x is used in this approach. In order to close the
near-wall treatment, k-diffusion is also blocked to the wall
ðok
oy jy¼0 ¼ 0Þ.
3. Numerical aspects

3.1. Numerical procedure

The set of governing partial differential equations has
been solved using finite volume techniques over a staggered
discretization (where velocities are calculated on the con-
trol volume faces). A structured grid has been used. Fully
implicit time integration has been applied, and a pressure
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based method of the SIMPLE family (semi-implicit method
for pressure-linked equations) [12] is used to solve the
velocity–pressure field coupling. Central differences are
employed for the evaluation of diffusion terms, and convec-
tive terms are discretized by means of UPWIND and
SMART schemes for channel flow and UPWIND and
Power-Law schemes for backward flow. A multi-grid itera-
tive solver is used to solve the algebraic linear system of
equations. For k and �=~� or x equations source terms have
been linearised in the usual form [12] to assume incondi-
tional positive values avoiding numerical instabilities. All
simulations have been carried out using a pseudo-transient
iterative algorithm, applying the biggest time-step which
ensures convergence, which, as has been shown, has
depended on the case and the model.
3.2. Numerical solutions verification

A post-processing procedure, based on generalized
Richardson extrapolation for h-refinement studies and on
the grid convergence index (GCI) proposed by Roache
[13] has been used in order to verify the numerical results
provided by the continuous (LRN) models analysed in this
work.

This technique is useful in order to establish criteria
about the sensitivity of the simulation to the computational
model parameters that account for the discretization: the
mesh spacing and the order of accuracy of the numerical
solutions (observed order of accuracy p). The error band
where the independent grid solution is expected to be con-
tained (uncertainty due to discretization GCI), and criteria
on the credibility of these estimations are also achieved by
this process. Local estimators of the GCI and p are calcu-
lated at the grid nodes where its evaluation has been possi-
ble. These grid nodes are called Richardson nodes. Global
values of GCI and p are calculated by means of volumetric
averaging. It is considered that an estimation is credible
when the global observed order of accuracy p approaches
its theoretical value, and when the number of Richardson
nodes is high enough. See [13] for details.

WF techniques do not allow this rigorous post-process-
ing verification procedure because of basically two reasons.
Firstly, specific near-wall treatments are built on point-
dependent formulation (mathematical formulation depends
Inlet
Outlet

(developed flow)

Isothermal Wall T=310 K

Symmetry

H/2

L/Dh = 60

a

Fig. 5. (a) Channel and (b) back
on the grid, so it cannot be verified by grid-refinement since
formulation can change as the refinement is applied). Sec-
ondly, the grid-refinement needed to apply these tools can-
not be directly applied in WF techniques, which are
designed to work relatively far from the wall, avoiding the
fine resolution required by LRN techniques. Hence, numer-
ical inaccuracies related to WF techniques remain mixed
with mathematical (related to model) inaccuracies. How-
ever, the latter are expected to be greater than the former.
In fact, all meshes applied to test WF treatments have been
designed using ratios Dynw/Dyin � 1 (near-wall cell normal
distance over first inner node normal distance), avoiding
numerical diffusion.
4. Test cases and results

In order to compare, analyse and develop turbulence
modelling by means of WF treatments, different cases have
been tested.

A channel flow at moderate Reynolds number (Res =
590, ReDh

� 43; 000) [14] (see Fig. 5a), has been studied to
check grid-sensitivity and aspects of modelling of physics
for developed approaches.

A backward facing step flow (BFS) [15] at Reynolds
number of ReH= 37,500 (based on step height H and on
inlet velocity �u1) has been considered to test model abilities
to solve reattached and separated flows (Fig. 5b). At the
same time, this is an interesting test to evaluate grid-sensi-
tivity of WF approaches, since the case presents different
kinds of near-wall cells (from y+ at logarithmic region until
typical viscous near-wall cells).

Additionally, both cases have allowed significant com-
parisons to quantify the relative computational savings
and improvements of WF techniques over LRN treatments.
4.1. Boundary conditions

The inlet conditions for test cases selected are formally
identical. For channel flow, after different intents to repro-
duce the friction Reynolds number of Res = 590 (since this
evaluation depends on the response of the model) an
acceptable equivalence has been fixed using ReDh

¼
43; 000 ð�uin ¼

mReDh

Dh
Þ, in addition to a turbulence intensity
Inlet Outlet
(developed flow)

Isothermal Wall T=310 K

H

35H83H

8H

b

ward facing step test cases.
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of 7% ðkin ¼ 0:072�u2
inÞ, and a dissipation rate �in ¼

Clk3=2
in

0:03H=2
or

specific dissipation rate of xin ¼ �in
Clkin

. Inlet temperature has

been fixed at Tin = 300 K to check heat transfer aspects.
As far as BFS is concerned, the imposition of the inlet

conditions has been more intricate. Driver et al. [15]
describes flow conditions at a location four step-heights
upstream of the step. Consequently, to obtain desired
upstream conditions, is the first aspect to solve. For this,
a channel flow has been developed and adjusted in order
to provide the desired inlet conditions for the BFS, this
is, the reported experimental inlet conditions.

This profile could be imposed at the inlet of the BFS,
saving the coupled resolution of the channel and the BFS
and, therefore, economising mesh and computational
requirements. However, and in order to simplify numerical
computations and to check numerical improvements of
WF techniques, the complete backward (plus channel)
has been computed, as Fig. 5b shows. The complete case
is, from an engineering point of view, more realistic and
it will focus on some problems of LRN techniques which
can be mitigated by using WF approaches.

Therefore, the inlet conditions for the BFS test case are
those that generate a channel flow which reproduces the
expected BFS inlet (at location four step-heights upstream
the step). Hence, a constant inlet velocity profile is fixed at
95% of the reported mean stream velocity four step-heights
upstream of the step ð�uin ¼ 0:95�u1Þ. The turbulence inten-

sity has been fixed at 3% ðkin ¼ 0:032�u2
inÞ, while the dissipa-

tion rate is �in ¼ 5
9

Clk3=2

in

0:03H ch=2
(for k–x models xin ¼ �in

Clkin
).

Finally, related to heat transfer computations, inlet tem-
perature has been fixed at Tin = 300 K.

For both cases, a ‘‘developed flow” outlet boundary
condition has been used, applying a null-gradient for T, k

and ~�, � or x. Normal velocity is obtained from a mass
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Fig. 6. Grid-sensitivity for the velocity profile (u+ = u/us) over wall distance (y+

SWF1 model; (b) SWF2 model.
balance for channel flow computations (fixing tangential
velocity to 0). Whilst, for BFS flow, normal velocity is
derived from an extrapolation of momentum equation
from inner nodes, and tangential velocity is obtained from
a null-gradient imposition.

Walls for both cases have also been considered isother-
mal at Twall = 310 K, ensuring heat transfer between them
and the flow.

4.2. Channel flow

With reference to channel flow, velocity and turbulent
profiles are analysed to evaluate grid-sensitivity and accu-
racy of presented approaches. In order to assess skills
and drawbacks related to present treatments, different grids
have been used. To test WF methods, a wide range of spa-
tial discretizations has been applied: from near-wall cells
placed at y+ < 0.05 (typical fine LRN mesh) up to locations
of y+ � 100.0 (limiting value for logarithmic region). This
wide range of meshes can be observed in different plots
herewith presented.

On the other hand, for LRN techniques, a grid-refinement
methodology has been used (see Section 3.2). Five different
meshes have been considered, ensuring through verification
estimators the achievement of asymptotic results.

4.2.1. WF computations

Standard approach (SWF1) and k–� modification
(SWF2) fail when near-wall node is placed at viscous
regions (see Fig. 6). Important discrepancies take place
when determining turbulent kinetic energy at viscous layer
(which can be seen in Fig. 8). Both models fail to predict
length-scales through �p. Despite improvements achieved
by SWF2 treatment when using near-wall nodes placed at
buffer-layer and viscous sublayer, their predictions are not
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acceptable under y+ < 10. Most probably explanation for
this inaccuracy is the use of HRN k–� in second and succes-
sive nodes, which are still placed in viscous areas for fine
meshes.

On the other hand, k–x approaches present a notori-
ously better behaviour. Fig. 7 shows a relatively small
grid-sensitivity for both k–x treatments. It seems reason-
able to think that using the high Reynolds number k–x
model for inner nodes allow to improve accuracy. The abil-
ity of the x-equation to provide both logarithmic and vis-
cous sublayer solutions becomes important when the inner
node is placed at viscous sublayer or buffer-layer. At the
same time, Fig. 9 shows, specially with the WWF2 treat-
ment, reasonably good turbulent kinetic energy predictions
in comparison to DNS data [14]. This is an essential aspect
in order to improve heat transfer accuracy. It is interesting
to note that the turbulent sudden increases for the second
wall cell for WWF1 computations (at near-wall nodes
placed between 5 < y+ < 20). Pseudo-harmonic interpola-
tion applied to obtain ln

t (Eq. (14)) seems to be responsible
of this fact. While this strategy reduces shear stress and
heat flux at near-wall nodes placed between 5 < y+ < 20
(trying to reproduce the wall-damping effect) the inner
node suffers an increase of the turbulent viscosity, lN

t ,
due to this ‘‘numerical” stress reduction. However, this
problem only appears in this thin region and the ‘‘numeri-
cal” stress reduction improves remarkably accuracy of the
method in the overall of the turbulent boundary layer.
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Table 5
SWF1 results

CV y+ y* Cf Nu Cf vs. EXP/DNS (%) Nu vs. EXP (%)

160/(4.0s) 0.055 9.71e�2 4.19e�2 579.97 675.21 468.1
80/(4.0s) 0.115 2.04e�1 4.15e�2 587.51 668.29 475.48
100 8.244 12.044 1.18e�2 190.89 117.84 86.98
70 10.289 15.670 8.98e�3 153.71 66.25 50.56
40 14.026 24.170 5.45e�3 93.52 0.87 �8.39
10 56.037 99.023 5.43e�3 86.35 0.63 �15.42

Notation and exp. references: see caption in Table 8.

Table 6
SWF2 results

CV y+ y* Cf Nu Cf vs. EXP/DNS (%) Nu vs. EXP (%)

160/(4.0s) 0.030 1.74e�2 1.25e�2 208.13 132.23 103.87
80/(4.0s) 0.063 4.50e�2 1.25e�2 212.68 131.04 108.33
100 8.244 12.044 1.18e�2 190.89 117.84 86.98
70 9.040 12.918 6.93e�3 119.71 28.34 17.26
40 14.026 24.170 5.45e�3 93.52 0.87 �8.39
10 56.037 99.023 5.43e�3 86.35 0.63 �15.42

Notation and exp. references: see caption in Table 8.

Table 7
WWF1 results

CV y+ y* Cf Nu Cf vs. EXP/DNS (%) Nu vs. EXP (%)

320/(4.0s) 0.010 2.09e�7 6.08e�3 108.47 12.55 6.25
160/(4.0s) 0.021 1.38e�6 6.05e�3 109.43 12.11 7.19
100 5.698 1.587 5.62e�3 80.11 4.04 �21.53
60 9.633 7.924 5.78e�3 107.87 7.06 5.66
40 14.178 23.346 5.01e�3 95.99 �7.22 �5.98
10 56.376 101.011 5.50e�3 88.54 1.86 �13.28

Notation and exp. references: see caption in Table 8.
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All treatments present very good agreement with DNS
data [14] for near-wall cells placed at logarithmic region
since they are using pure log-law for y+ > 30. An overview
of Cf grid-sensitivity of presented models can be followed
in Tables 5–8.
As far as heat transfer is concerned, grid-sensitivity suf-
fers an important increase. SWF1 and SWF2 present the
same distorted behaviour as fluid flow predictions for
near-wall cells placed at viscous regions, which was
expected. As far as logarithmic areas is concerned, Nu var-



Table 8
WWF2 results

CV y+ y* Cf Nu Cf vs. EXP/DNS (%) Nu vs. EXP (%)

320/(4.0s) 0.010 2.50e�7 6.08e�3 108.50 12.58 6.28
160/(4.0s) 0.021 1.38e�6 6.06e�3 109.55 12.26 7.31
100 5.698 1.587 5.62e�3 80.11 4.04 �21.53
60 9.506 3.160 5.63e�3 66.47 4.25 �34.89
40 14.314 24.621 5.67e�3 97.90 5.07 �4.1
10 56.613 102.707 5.55e�3 86.29 2.72 �15.48

Exp: 1ffiffi
f
p ¼ 2:0 log ReDh

ffiffiffi
f
p
� 0:8; ðCf ¼ f =2Þ, Nu ¼ 0:023Re0:8

Dh
r0:4, (s) = Mesh stretching based on tanh function detailed in [16].
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iability is much higher than corresponding Cf grid-sensitiv-
ity (see Tables 5 and 6). On the other hand, k–x
approaches also show a higher variability for Nu predic-
tions in comparison to Cf results. The WWF1 model is able
to achieve the smallest grid-sensitivity behaviour of all pre-
sented models, presumably thanks to wall-damping effect
correction (see Tables 7 and 8). However, all approaches
(even working on logarithmic near-wall cells) present inac-
curacies approximately of 15% with respect to experimental
Dittus–Boelter correlation (see caption in Table 8). Possi-
ble explanations can be found on assumptions applied
(constant turbulent Prandtl number (rT), application of
the‘‘pee-function” [9] to obtain the law-of-the-wall for tem-
perature, etc.). Further development has to be carried out
in order to improve heat transfer predictions of all pre-
sented treatments.
4.2.2. LRN computations

With reference to LRN methods, Tables 9 and 10 present
the grid study, as well as asymptotic results for WX93 and
IL models, respectively. Fig. 10 presents velocity and turbu-
lent kinetic energy predictions for both models using the fin-
est mesh. Velocity predictions are similar to the ones
obtained for WF techniques. Whilst, the ones related to k

predictions, only the WX93 model seems to improve noto-
Table 9
WX93 results

CV y+ y* Cf

160/(4.0s) 0.021 1.73e�4 6.14e�3
80/(4.0s) 0.044 7.66e�4 6.12e�3
40/(4.0s) 0.097 3.86e�3 6.07e�3
20/(4.0s) 0.238 2.47e�2 5.84e�3
10/(4.0s) 0.701 2.70e�1 4.86e�3

Exp: 1ffiffi
f
p ¼ 2:0 log ReDh

ffiffiffi
f
p
� 0:8; ðCf ¼ f =2Þ, Nu ¼ 0:023Re0:8

Dh
r0:4, (s) = Mesh s

Table 10
IL results

CV y+ y* Cf

160/(4.0s) 0.019 2.87e�5 5.32e�3
80/(4.0s) 0.042 1.68e�4 5.59e�3
40/(4.0s) 0.100 1.56e�3 6.37e�3
20/(4.0s) 0.270 2.20e�2 7.47e�3
10/(4.0s) 0.898 5.01e�1 7.96e�3

Exp: 1ffiffi
f
p ¼ 2:0 log ReDh

ffiffiffi
f
p
� 0:8; ðCf ¼ f =2Þ, Nu ¼ 0:023Re0:8

Dh
r0:4, (s) = Mesh s
riously accuracy. A near-wall distance of y+ � 0.02 needs to
be achieved in order to obtain asymptotic results and veri-
fied predictions for both LRN models. This mesh require-
ment obviously implies important computational and
CPU-time requirements. Table 11 offers a comparison
between needed CPU times for different treatments. Model
accuracy is approximately equal (using experimental and/or
DNS data as references, all treatments are placed approxi-
mately in similar error range) and, on the contrary, CPU
time consumptions for LRN techniques is considerably
higher than the needed time for WF methods. Obviously,
this is a very simple case, without separation, where WF
techniques have been adjusted and where more general abil-
ities of LRN techniques are not highlighted because of the
simplicity of the flow. Additionally, presented CPU times
for LRN techniques are related to verified predictions (see
Section 3.2 and Tables 12 and 13), while WF simulations
cannot ensure this point. Anyway and despite the simple
case here treated, the quality of the mesh needed by LRN
methods is an important handicap when solving fluid flow
and heat transfer for engineering and industrial cases. The
next test, the BFS flow, will present new features and this
fact will be underlined again, bringing clarity to huge differ-
ences regarding computational requirements and their rela-
tionship to the accuracy of the predictions.
Nu Cf vs. EXP/DNS (%) Nu vs. EXP (%)

110.47 13.70 8.20
112.65 13.33 10.34
116.08 12.41 13.70
115.78 8.15 13.40
94.40 �10.01 �7.54

tretching based on tanh function detailed in [16].

Nu Cf vs. EXP/DNS (%) Nu vs. EXP (%)

96.68 �1.48 �5.30
103.55 3.52 1.43
121.96 17.96 19.46
153.76 38.33 50.60
183.48 47.41 79.71

tretching based on tanh function detailed in [16].
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Table 11
Computational requirements and accuracy for different treatments

Model CV normal
dir.

CPU time
(min)

Cf vs. EXP/DNS
(%)

Nu vs. EXP
(%)

SWF1 40* 1.49e�1 0.87 �8.39
SWF2 40* 1.49e�1 0.87 �8.39
WWF1 40* 8.05e�2 �7.22 �5.98
WWF2 40* 8.36e�2 5.07 �4.10
IL 160** 7.77e2 �1.48 �5.30
WX93 160** 6.11e2 13.70 8.20

Channel flow simulations Res = 590. (*) without mesh stretching;
** applying mesh stretching (see [16]). CPU characteristics: AMD Athlon
2600 Hz.
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4.3. BFS flow

The proposed BFS case (Fig. 5b) contributes to the
work by adding a test involving separated/reattached flow,
Table 12
WX93 convergence estimators for channel flow

Grid �u� ¼ �u=uin T � ¼ T=T in

n3/n2/n1 Rn (%) p GCI* (%) Rn (%)

m0 m1 m2 78 1.7 8.5e�02 90
m1 m2 m3 93 2.1 1.6e�02 88
m2 m3 m4 88 1.9 9.2e�03 92

ReDh
¼ 43; 000.

Table 13
IL convergence estimators for channel flow

Grid �u� ¼ �u=uin T � ¼ T=T in

n3/n2/n1 Rn (%) p GCI* (%) Rn (%)

m0 m1 m2 74 0.1 1.4e+01 50
m1 m2 m3 92 0.9 4.6e�01 94
m2 m3 m4 96 1.4 7.9e�02 99

ReDh
¼ 43; 000.
geometrically complex and related to different wall grid
meshing. This test case is important to assess turbulence
models and modifications suggested herewith.
4.3.1. About the spatial discretization

As explained in Section 4.1, the coupled resolution of
the development channel flow (to generate initial condi-
tions) and the backward step has been carried out to sim-
plify numerical computations and to check a more
realistic test case, despite the increase of mesh require-
ments, specially for LRN treatments. For WF treatments,
seven different meshes have been used to test grid-sensitiv-
ity of models. Fig. 12 exhibits y+ obtained for several
near-wall cells, using WWF2 treatment. The development
channel is computed using a coarse near-to-wall region,
with near-wall nodes located from y+ � 230 (mesh m-2)
k� ¼ k=ð0:03u2
inÞ

p GCI* (%) Rn (%) p GCI* (%)

1.8 4.0e�02 72 2.1 1.0e+00
2.2 6.0e�03 78 1.8 4.5e�01
2.1 1.4e�03 76 2.1 9.0e�02

k� ¼ k=ð0:03u2
inÞ

p GCI* (%) Rn (%) p GCI* (%)

0.4 4.7e�01 86 1.5 4.1e+00
0.4 3.7e�01 97 1.4 2.7e+00
1.4 3.0e�02 98 1.8 5.7e�01



Table 14
Meshes for BFS case (axial X wall-normal)

Model WF treatments LRN IL LRN WX93

m-2 226 � 44* – –
m-1 226 � 66* – –
m0 226 � 22** 32 � 24** 32 � 24**

m1 226 � 44** 64 � 48** 64 � 48**

m2 226 � 88** 128 � 96** 128 � 96**

m3 226 � 176** 256 � 192** 256 � 192**

m4 226 � 352** 512 � 384** 512 � 384**

* without mesh stretching; ** applying mesh stretching (see [16]).

High Reynolds-number region

near-to-wall mesh concentration

Fig. 11. BFS mesh qualitative description.
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up to near-wall cells placed at y+ � 11 (mesh m4). As to the
near-wall resolution of the area located downstream the
step, mesh has been concentrated obtaining near-wall cells
between y+ � 100 and y+ � 0.5, depending on the mesh. As
can be observed, this set of simulations offers a wide range
of placements for near-wall cells.

For LRN treatments, an important computational effort
has been carried out to ensure the achievement of verified
computations, following techniques explained in Section
3.2. Five different meshes for grid-refinement studies have
been used. IL and WX93 models have needed very fine
meshes, obtaining similar verifications estimators, and a
relatively good accuracy. Because of the structure of the
grid (Cartesian), mesh spacing applied on near-wall resolu-
tion for development channel is also applied on step down-
stream, where a high Reynolds number region takes place
(see Fig. 11). This fact is essential to understand the present
increase of the computational requirements related to LRN
techniques, owing to the fine resolution needed by these
techniques near the channel-wall and downstream step-
X/H
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a

Fig. 12. Corresponding y+ of near-wall cells for meshes used in BFS case: (a) W
models.
wall. Table 14 summarises all meshes used to analyse
BFS case.
4.3.2. WF computations

Tables 15–17 show performance of approaches to pre-
dict minimum Cf (in the recirculation bubble, where veloc-
ity has changed its sign), reattachment length ðX H

r Þ and
maximum heat transfer, respectively, for WF approaches.

Using coarsest meshes (m-1, m-2), WWF1 and WWF2
treatments present a better behaviour than SWF1 and
SWF2 approaches. This is in agreement with the observed
smaller grid-sensitivity of k–x approaches over channel
flow, since such kinds of meshes (because there is flow sep-
aration and an increase of viscous effects at recirculation
zone) present logarithmic and typical viscous near-wall
cells.

As far as the finest meshes is concerned, k–x approaches
tend to the asymptotic results provided by the high Rey-
nolds number k–x model [5] (obtaining them at mesh
m4). On the other hand, k–� predictions are degraded when
refining the mesh (which was expected due to their behav-
y+

X/H
-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

10-2

10-1

100

101

102

y+ IL
y+ WX93

b

F meshes for WWF2 model; (b) finest LRN mesh (m4) for IL and WX93



Table 15
BFS Min. Cf. Exp. MinCf = �1.020e�3 [15]

Model m-2 m-1 m0 m1 m2 m3 m4

SWF1 �1.260e�3 �1.072e�3 �1.929e�3 �2.480e�3 �4.075e�3 � �
SWF2 �1.260e�3 �1.072e�3 �1.460e�3 �2.184e�3 �2.718e�3 � �
WWF1 �1.281e�3 �1.114e�3 �1.333e�3 �1.465e�3 �1.346e�3 �1.381e�3 �1.407e�3
WWF2 �9.206e�4 �7.382e�4 �1.316e�3 �1.543e�3 �1.398e�3 �1.398e�3 �1.422e�3

Table 16
BFS reattachment X H

r ¼ X r=H Exp. X H
r ¼ 6:26� 0:1 [15]

Model m-2 m-1 m0 m1 m2 m3 m4

SWF1 3.12 3.64 3.06 4.07 4.79 – –
SWF2 3.12 3.64 3.11 4.35 4.96 – –
WWF1 4.49 4.86 4.29 5.27 5.65 5.72 5.92
WWF2 4.05 4.48 4.19 5.17 5.67 5.85 5.87

Table 17
BFS Max. Nu

Model m-2 m-1 m0 m1 m2 m3 m4

SWF1 217.8 192.7 204.3 304.4 426.1 – –
SWF2 217.8 192.7 206.1 254.2 321.3 – –
WWF1 182.7 164.5 183.8 182.1 169.6 184.2 185.9
WWF2 165.4 143.8 182.3 140.3 165.8 183.3 185.2
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iour using near-wall cells placed at viscous areas in channel
flow test case). Consequently, predictions for m0 mesh
present a strange behaviour (see Figs. 13 and 14) because
of the mesh stretching applied to the wall and convergence
have not been achieved for m3 and m4 meshes, where prob-
ably too many control volumes are placed in viscous areas.

Related to heat transfer, grid-sensitivity has been
checked through the examination of Nu number. As
shown, in Fig. 15, Nu grid-sensitivity for WWF1 treatment
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Fig. 13. SWF1 BFS simulations ReH = 37,500: (a) skin frict
is reasonably small and much smaller than observed grid-
sensitivity for k–� methods. Results for the WWF2 model
are close to the ones obtained for WWF1 (see Fig. 16),
while the SWF1 Nu behaviour shows a higher grid-sensitiv-
ity than the SWF2 method, as can be seen in Table 17.

4.3.3. LRN computations

On the other hand, LRN models present a quite different
behaviour. Again, as can be checked in Fig. 12, near-wall
cells placed at y+ � 0.5 in both walls (development channel
and downstream of the step) to achieve asymptotic results
and verified computations have been needed. This is the
main reason to explain the extremely dense mesh used
and the high CPU time needed for both simulations (see
Table 18). Verification of numerical solutions has been ana-
lysed through methodology explained in Section 3.2. Tables
19 and 20 present verification estimators, and Table 21
shows the evolution of the reattachment length for WX93
and IL LRN models, respectively. This information demon-
strates the achievement of asymptotic results (high percent-
age of Richardson nodes and orders of accuracy ‘‘p” close
to theoretical ones), and ratifies the need of using such fine
meshes. The distorted simulations for coarse meshes using
the WX93 model is especially flagrant, where reattachment
is underpredicted over 60%!. This fact is paradigmatic
in order to understand the need of grid-refinement, as
well as to show the previously known sensibility of
X/H

N
u

0 10 20 30

50

100

150

200

250

300

350

400

450 Nu m-2
Nu m-1
Nu m0
Nu m1
Nu m2

b

ion ðCf ¼ sw

1=2qU1
Þ; (b) Nusselt number ðNu ¼ qw

kðT w�T inÞ=3HÞ.



X/H

C
f

0 10 20 30
-5.0E-03

-4.0E-03

-3.0E-03

-2.0E-03

-1.0E-03

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

Cf m-2
Cf m-1
Cf m0
Cf m1
Cf m2
Cf EXP

X/H

N
u

0 10 20 30

50

100

150

200

250

300

350

400

450 Nu m-2
Nu m-1
Nu m0
Nu m1
Nu m2

a b

Fig. 14. SWF2 BFS simulations ReH = 37,500: (a) skin friction ðCf ¼ sw
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Fig. 15. WWF1 BFS simulations ReH = 37,500: (a) skin friction ðCf ¼ sw
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Þ; (b) Nusselt number ðNu ¼ qw
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x-approaches to the near-wall mesh density. Related to
accuracy, as shown in Fig. 17, Cf predictions are quite close
to experimental results for both models: IL presents a very
accurate reattachment length, while WX93 model shows a
better minimum Cf in recirculation bubble. Both Nu predic-
tions are quite similar, and also quite the same the ones
obtained using finest meshes for WF k–x approaches.

5. Concluding remarks

A critical study of different WF treatments have been
presented. Considerations about turbulence modelling by
means of k–� and k–x two-equation eddy-viscosity
approaches have been carried out. Different strategies to
improve detected grid-sensitivity for standard SWF1 treat-
ment [3] have been proposed which are briefly described
based on: enhancing � profile using a two-layer integration
to obtain �p and �N (SWF2 approach); changing dissipative
variable from � to x (and also changing the HRN model
used for inner nodes from k–� [4] to k–x [5]) (WWF1
approach) and, finally, designing a blending function to
reduce grid-sensitivity on an x platform (WWF2
approach). A rigorous grid-study has been carried out on
channel and backward step flows. Both test cases have been
useful to check model grid-sensitivity using a wide range of
meshes, from extremely coarse to extremely fine grids. x
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Table 18
Computational requirements and accuracy for different treatments

Model CV normal
dir.

CPU time
(min)

Reattachment
length

Error vs. EXP
(%)

SWF1 66* 86.17 3.64 �41.86
SWF2 66* 94.18 3.64 �41.86
WWF1 66* 24.98 4.86 �22.36
WWF2 66* 50.78 4.48 �28.43
IL 384** 3092 6.09 �2.71
WX93 384** 2985 5.45 �12.93

BFS flow simulations ReH = 37,500. * without mesh stretching; **

applying mesh stretching (see [16]). CPU characteristics: AMD Athlon
2600 Hz.

Table 21
Evolution of BFS reattachment with grid-refinement using IL and WX93
LRN models X H

r ¼ X r=H Exp. X H
r ¼ 6:26� 0:1 [15]

Model m0 m1 m2 m3 m4

IL 5.28 5.19 5.60 5.79 6.09
WX93 2.28 2.77 3.47 4.49 5.45
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approaches have presented better accuracy and smaller
grid-sensitivity than � treatments. However, all methods
have shown poor abilities to predict accurate heat transfer
Table 19
WX93 convergence estimators for BFS flow

Grid �u� ¼ �u=uin T � ¼ T=T in

n3/n2/n1 Rn (%) p GCI* Rn (%)

m0 m1 m2 84 1.0 1.0e+00 58
m1 m2 m3 84 0.5 0.5e+00 92
m2 m3 m4 91 0.9 1.2e+00 89

ReH = 37,500.

Table 20
IL convergence estimators for BFS flow

Grid �u� ¼ �u=uin T � ¼ T=T in

n3/n2/n1 Rn (%) p GCI* (%) Rn (%)

m0 m1 m2 78 1.3 1.1e+00 75
m1 m2 m3 56 0.5 2.9e+00 51
m2 m3 m4 81 0.8 8.6e�01 80

ReH = 37,500.
rates, since assumptions to derive a law-of-the-wall for
temperature seem to be too simple.

LRN computations have been carried out in order to
compare accuracy and computational requirements when
trying to solve present test cases. As can be seen, IL [6]
and WX93 [7] models generally offer an improvement on
accuracy, especially for the BFS case. This was expected
since this test case is obviously more complex than the
k� ¼ k=ð0:03u2
inÞ

p GCI* (%) Rn (%) p GCI* (%)

2.4 8.3e�03 98 3.9 1.5e+00
1.4 2.1e�02 99 0.8 9.4e+00
1.4 8.7e�03 86 1.4 1.7e+00

k� ¼ k=ð0:03u2
inÞ

p GCI* (%) Rn (%) p GCI* (%)

3.0 3.3e�03 64 1.2 1.5e+00
1.2 9.3e�03 61 0.1 3.0e+01
0.4 4.3e�02 83 1.1 5.8e�01
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Fig. 17. IL and WX93 BFS simulations for m4 mesh ReH = 37,500: (a) skin friction ðCf ¼ sw
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channel flow. However, this improvement has needed
important computational requirements, implying very huge
CPU time increases. In particular, the BFS case tested pre-
sents a complete configuration which becomes quintessen-
tial in order to quantify WF advantages in front of
classical LRN methods. Present x WF treatments advertise
a flexibility which enable such treatments to obtain rela-
tively accurate predictions while saving important compu-
tational requirements in comparison to LRN treatments.
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